sand mold used with anthracite

Anthracite In Castings, Refractory Linings And Other Foundry Applications

Anthracite is a type of coal which, in addition to the obvious use as a combustible fuel, has other applications in the refractory/high temperature manufacturing field. As it is combustible, anthracite’s use in high temperature applications require it to be used in a sacrificial manner, in a heat-treated form (calcined) or as a component in a wider refractory. Anthracite is one of the harder forms of coal, with a high carbon content, it burns relatively cleanly compared to its peers. Anthracite’s abundance and thus low cost makes it an attractive material for a variety of applications.

For brevity and clarity, anthracite that has been calcined will be referred to as ‘CA’ throughout this text. A high quality calcination process, for example electro-calcination, is required to attain high quality CA - but this overall requires a good source of anthracite as a starting material(1)


Anthracite Uses in Castings

In casting environments, the pore size of the casting mold is important as if pore size is too large, small amounts of molten metal can collect in them and cool, producing ‘whiskers’, which must be milled off the final product, adding time and expense to a process. CA has small and consistently sized pores, and depending on the casting, the CA may behave in a sacrificial method and burn off. In particular utility to metal production, highly calcined anthracite can be used in a monolithic castable graphitic refractory(2). This particular example is formed as a slurry and the monolith is generated in situ in the furnace it is due to line, but the pouring and curing of a slurried refractory around a pattern in the traditional sense is also a popular method. When anthracite is added to refractory castables, castings have been reported as being smoother(3) and lesser amounts of pollutants due to CA’s relative purity compared to other carbon sources.

Anthracite Uses in Linings

In the design of blast furnaces from the 1960’s onwards, anthracite-based refractories are used to line the hearth (i.e. the bottom) of the furnace(4). Such linings are typically found on the order of 3 m thick, and some are water or air cooled, these refractories provided an endurance of around seven years - significantly improved over the previous silica/alumina refractory hearths whose campaigns lasted no more than two years(5). Modern designs of furnace utilise an approach where a ceramic cup is used in contact with the molten metal, with an anthracite-graphite refractory in contact with the furnace’s walls and hearth. Furnace life for the combination ceramic and anthracite-graphite is estimated at 15 years.

Wear of the furnace is particularly concentrated in the hearth, where temperatures often reach their highest and liquid metal flow rate is high. Monoliths based on anthracite have been used in hearths, providing resilience over multiple heating-cooling cycles.

molten metal being poured, requires refractory materials to do it
molten metal being poured in moulds made with filler sands

In parts of the blast furnace, a monolith comprising 80% CA has been demonstrated for use in the hearth(6). Here, the liquid metal flow rate is high, meaning turbulence and an uneven level of wear across the lining. CA, in experimental testing, is resistant to thermal shock, oxidation and chemical attack at temperatures exceeding 1,000 °C over the lifetime of the furnace run. Monolith CA is bulk volume stable under furnace conditions(7).

When used as conventional insulation away from the hearth, carbon-type linings are typically on the less than a metre thick(8) and are in refractory brick form as opposed to monoliths. In general terms, thermal stress/shock towards carbon-based linings has historically been a problem, but with the use of CA(9) and suitable fillers in joints(10), combined with temperature dispersion across a large thermal mass, thermal shock is not seen as a significant concern during normal operations in a contemporary furnace environment. Fillers themselves can have significant proportions of anthracite in their composition(11). Alkali attack does remain a concern, especially at the highest of temperatures, but some studies have shown that with the use of microporous CA, the effects of alkali attack are minimised(12). This paves the way for longer term CA use in linings.

Smelting And Molten Metal Holding Tank Applications

Smelting and holding tank applications require long term resistance to temperature and thermal shock - CA is valued for its resistance to these and to chemical corrosion. Aluminium smelting, in particular, has afforded the use of carbon-based smelter linings and electrodes for many years(13), with electrode examples from the early 1980’s employing up to 75% CA by mass and having performance equal to those with purely graphite electrodes(14). Even accounting for high quality calcining processes, CA is more cost effective than pure graphite whilst retaining high levels of performance. As a lining, the CA is chiefly present for the insulation of the pot and/or holding tank, i.e. to prevent the molten metal setting in situ.Electrodes and linings can be formed in the conventional way as bricks, as monoliths or even from pastes that are largely CA (and small amounts of other carbon types) based(15). As electrodes, a further brief discussion on why CA is suitable for this application can be found below.

As CA is one of the most popular choices of lining of aluminium smelters, with smelter intervals lasting up to six years, shutting down only to replace the cathodes(16), CA is used in some scenarios as both a cathode component and as a lining. The shut down is required due to the significant build up of aluminium carbide and whilst carbide formation is favoured on disordered carbon structures (such as CA)(17), CA is more resistant to electrochemical wear(18), as adhesion of carbides may be stronger to more ordered structures. Therefore, CA can be used alongside other carbon-type materials such as graphite to provide a lining and a cathode that fulfils idealised properties for conductivity and chemical resistance, whilst balancing issues of cost. Uncalcined anthracite would not routinely be used.

moulds made of green sand
metal products made using coal dust

Rappoport Effect

The Rappoport effect in smelting and electrode applications refers to the tendency of carbon-type cathodes or cathode blocks to expand at temperature due to the penetration of fluorinated and sodium-type compounds, themselves largely relating from impurities in the metal. The Rappoport effect is a physical, not chemical, phenomenon. Such expansion reduces the efficiency of the cathode(19) and decreases its available surface area for electrolysis processes. Calcination temperature and structure of the original calcined material are the major arbiters of whether the Rappoport effect will be observed(20). Small and consistent pore sizing on CA is viewed as advantageous to mitigating the Rappoport effect. It has been reported that Rappoport expansion is inversely proportional to calcination temperature up to 2,000 °C(21).

hot metal just out of the furnace that used anthracite

Other Foundry Applications

Other foundry uses include, calcined anthracite, which has been used as a component in electrodes in furnaces, in addition to the previously-mentioned lining application, for metals such as titanium and the previously mentioned aluminium. Such electrodes are typically largely carbon or graphite based. The chief reasons for the use of CA are its inexpensive nature and interesting electrical resistance profiles(22). Untreated anthracite is relatively highly electrically resistive (i.e. a poor conductor), however CA treated between 600 and 900 °C shows a resistivity loss on the order of two to three orders of magnitude; reaching only 1,000 µΩ at 1,300 °C(23), with similar values being observed in other studies(24). Calcination is also associated with an increase in structural strength, with levels of porosity fluctuating but substantial changes are not noticed. Notably, anthracite begins undergoing graphitisation at ca. 2,200 °C(25).

coal dust used in the moulding process
moulds that use anthracite


  • Anthracite is a useful and inexpensive form of coal that has many applications in the refractory sphere
  • In metal fabrication, CA can be used in the production of molds for molten metal castings
  • As a key component of blast furnace linings, CA is valued for its performance and longevity at high temperatures, over long timeframes, in either monolith or refractory brick form. These are widely used in iron and steel production
  • CA is used as one of the key materials in smelter pot lining for electrically-refined metals such as aluminium - a key industrially and economically important process
  • In the production of other metals, CA can be used as a component in electrodes owing to its structural strength and good electrical conductivity profile at temperature
Pot filled with milled anthracite


1          M. M. Gasik et al., Modelling and Optimisation of Anthracite Treatment in an Electrocalcinator, in: 12th International Ferroalloys Congress, Helsinki, 2010

2          US Patent US9695088B2, 2010

3          P. Jelínek and J. Beňo, Arch. Foundry. Eng., 2000, 8, 67

4          A. Singh, Trans. Ind. Ceram. Soc., 1982, 41, 21

5          R. M. Duarte et al., Ironmaking and Steelmaking, 2013, 40, 350

6          F. Vernilli et al., Ironmaking and Steelmaking, 2005, 32, 459

7          S. Ge et al., Metallurg. Mater. Trans. B, 1968, 20. 67

8          S. V. Olebov, Refractories, 1964, 5, 189

9          M.W. Meier et al., Light Metals, 1994, 685

10        P. G. Whiteley, Steel Times Inter., 1990, 11, 32.

11        J. Tomala and S. Basista, Micropore Carbon Furnace Lining, in: INFACON XI, New Delhi, 2017

12        B. Chatterjee and K. K. Singh, Refractory Practices in Ferro-alloy Smelting Furnaces, in: 4th Refresher Course on Ferro Alloys, Jamedepur, India, 1994

13        H. Hayashi et al., J. Metals, 1968, 20, 63

14        M. Born et al., Freiberger Forschungshefte A, 1990, 603, 56 (in German)

15        K. M. Khaji et al., J. Inst. Eng. (India), 1982, 63, 60

16        S. Pietrzyk et al., Arch. Metall. Mater., 2014, 59, 545

17        B. Welch et al., Light Metals, 2000, 399

18        N. Akuzawa et al., Light Metals, 2008, 979

19        J. M. Peyneau, Design of Highly Reliable Pot Linings, in: A. Tomsett and J. Johnson (eds), Essential Readings in Light Metals, Springer, Cambridge, 2016

20        Rapoport and Samoilenko, Tsvetnye Metally, 1957, 2, 44 (in Russian)

21        D. Belitskus, Metallurg. Trans. B, 1977, 8, 591

22        I. M Kashlev and V. M. Strakhov, Coke and Chemistry, 2008, 61, 136

23        I. V. Surotseva et al., Coke and Chemistry, 2012, 55, 231

24        V. I. Lakomskii, Coke and Chemistry, 2012, 55, 266

25        A. B. Garcia et al., Fuel Process. Tech., 2002, 79, 245